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1. Introduction 

Graded-index (GI) optical fibers with appropriate geometries can be used as refractive-index 
sensors, even without removing the cladding. For sensing purposes, light attenuation should 
vary when the fiber is immersed in fluids of different refractive indices, which only requires 
using fibers without protective jacket (no more than core and cladding). Since there is no step 
between the core and the cladding refractive indices, light rays are not reflected at the core-
cladding interface. However, there is a step between the cladding and the external medium. 
Light rays follow curved paths in the core, which, in certain cases, reach the interface with the 
cladding, the trajectory becoming a straight line inside it. At the interface with the external 
medium, rays can get lost by refraction, if the angle of incidence on this surface is lower than 
the critical one. If there are refracted rays, the attenuation in the fiber will depend on the 
refractive index of the medium surrounding it. To ensure a noticeable loss of power, fiber 
optic tapers can be employed [1-3]. 

The main novelty in this paper is that we analyze this sensing principle for the case of GI 
polymer optical fibers (GI POFs) instead of glass ones. POFs have many practical advantages 
over glass optical fibers: on the one hand, the material is much more flexible, which allows 
much larger diameters. This facilitates handling and installation, with low-cost connectors and 
components and less strict geometrical tolerances. On the other hand, they have high 
numerical apertures (which facilitates the use of inexpensive light sources) and also low 
attenuation in the visible region and, in some cases, even in the second window (1300 nm). 
Specifically, with the introduction of perfluorinated poly(methyl methacrylate) (PMMA), the 
maximum transmission distance due to attenuation has been extended from 100 m to over 
1 km [4]. However unimportant this may be in the sensing head itself, an already installed 
POF-based local area network may include remote sensing among many other services, so 
POFs of low attenuation are still desirable. 

For these and other reasons, POFs have been attracting a considerable amount of 
attention. For example, they are often used as transducers in sensing applications requiring no 
more than the POF itself, an inexpensive LED and a photodiode, the sensing principle often 
relying on the modulation of light intensity, so sophisticated signal interrogation techniques 
are not necessary. Besides, the set-up is often easier [5-6]. One advantage of sensors based on 
GI POFs, in comparison with those achieved with other solutions with step-index (SI) POFs, 
is that the former do not require removing part of the cladding, which may be difficult in 
practice [7,8], while GI POFs retain the advantages already commented for POFs in general 
over glass fibers. 

In this paper we also describe a new implementation of the ray-tracing method for the 
analysis of tapered GI fibers. A previous method [1] for the specific case of glass GI tapers 
consisted in using a numerical integration technique proposed in [2] for the case of step-index 

#99997 - $15.00 USD Received 11 Aug 2008; revised 21 Sep 2008; accepted 22 Sep 2008; published 2 Oct 2008

(C) 2008 OSA 13 October 2008 / Vol. 16,  No. 21 / OPTICS EXPRESS  16617



tapers. This may be admissible for GI fibers of low numerical aperture, but it could not be 
employed for the high-numerical-aperture GI fibers analyzed by us, as will be explained later. 

This method serves us to analyze tapers with the presently three existing types of 
commercial GI POFs. Experimental and theoretical results available with sensors using 
tapered graded-index glass fibers are employed to validate the numerical calculations.  

In theory, the maximum outer refractive index that can be measured in all cases coincides 
with that of the cladding (n2), since all rays escaping from the core into the cladding would 
also escape from the cladding if the outer medium’s refractive index is greater than or equal to 
n2. Since n2 depends on the material used to manufacture the fiber, which cannot be arbitrarily 
changed, each fiber will have its own upper bound of measurable refractive indices. In Table 1 
we summarize the main characteristics of the commercial fibers studied, where n is the 
refractive index of the outer medium, ρ0 is the core radius, ρ0,clad is the radius of the cladding, 
n1 and n2 are the core and the cladding refractive indices respectively, and g is the refractive 
index profile exponent [9]. Note that the OM-Giga and the GigaPOF fibers have the same 
characteristics, despite being from different manufacturers [10,11]. The characteristics of the 
Lucina fiber (the other commercial GI-POF) can be found in [12]. 

Table 1. Different possible fiber candidates for a refractive index sensor. 

Type of fiber 
Measurable 
n 

ρ0 
(μm) 

ρ0,clad 
(μm) 

n1 n2 g 

LucinaTM ≤ 1.34 60 245 1.35
2 

1.34 2.
1 

OM-
GigaTM 

≤ 1.492 450 500 1.52
2 

1.49
2 

2.
89 POF 

GigaPOFT

M 
≤ 1.492 

450 500 
1.52
2 

1.49
2 

2.
89 

Glass fiber ≤ 1.459 31.25 62.5 1.46
9 

1.45
9 

2 

 
2. Implementation of the ray-tracing method 

The use of a computer model based on the ray-tracing method is one of the most flexible ways 
to calculate the propagation of light along a highly multimode optical fiber. It is based on a 
geometric-optics approach that uses light rays in combination with Fresnel transmission 
coefficients for the calculation of radiation losses along the fiber, which, in the case of graded-
index fibers, may occur either when the ray reaches the outer interface of the cladding or at 
turning points, by means of a tunneling mechanism [9]. 

A good simplified approach consists in neglecting tunneling effects, considering only 
refraction losses and using a transmission coefficient that is 1 whenever refraction occurs and 
0 otherwise [8,9]. At reflection points, both refraction and tunneling loss due to the evanescent 
field can occur, but the latter is negligible unless the incidence angle αi is only slightly greater 
than the critical angle αc. On the other hand, when αi < αc, refraction occurs, the Fresnel 
transmission coefficient T being approximately 1 if αi /αc < 0.9 [8]. When αi is closer to αc, a 
precise value of T is given by a generalized Fresnel transmission coefficient that takes into 
account the local curvature at the interface, T being less than 1. Therefore, by using T = 1 
whenever αi < αc and T = 0 otherwise, we are obtaining a value of attenuation slightly greater 
than the real one. Thus, our results provide an upper limit for the attenuation of the tapers 
considered, serving this value as a conservative reference, in the sense that in practice slightly 
smaller attenuations can be expected. 

The ray paths in the case of GI fibers are usually calculated numerically, since, very 
often, it is not possible to find an analytical expression for the ray path considered. 
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The mathematical expressions for the definition of the geometrical and optical parameters 
for the numerical resolution the eikonal equation in graded-index tapered multimode fibers, 
not previously available in the literature, will also be provided in this section. 
2.1 Discretization of the eikonal equation 

In this section we will explain how to apply the ray-tracing method inside a graded-index 
tapered fiber with cladding. The path of a light ray propagating in a graded-index medium is a 
curve governed by the eikonal equation [9]: 

 ( ) ( )
d d

n n
ds ds

⎛ ⎞⋅ =⎜ ⎟
⎝ ⎠

r
r r∇ , (1) 

where r is the position vector of a generic point in the curve, s is its natural parameter 
(distance from any given point r0 along the ray path), n(r) is the refractive index as a function 
of the point in space, and ∇n(r) is its gradient. Note also that dr/ds is the unit tangent tunit to 
the ray path at r. Figure 1 illustrates this. 

The eikonal equation is valid for any geometry as long as n(r) is sufficiently smooth. At 
points where n is discontinuous, reflection or refraction occurs as governed by Snell’s law. 
When an analytic or exact solution for the ray path does not exist, as usually happens, the 
eikonal equation must be solved numerically in order to obtain the trajectory of the light ray 
approximately. 

Furthermore, in many practical implementations of the ray-tracing method it is critical 
that the approximate solution of the eikonal equation be obtained in a very efficient way from 
the numerical point of view, i.e. with a computational effort as small as possible for any given 
accuracy. This is due to the fact that the ray-tracing computational simulation of light 
propagation along a POF typically involves tracing the paths of several thousands of 
individual rays [8], the trajectory of each one of them being discretized into many thousands 
of individual steps. 

 

y 

z 

x 

r r+dr 

dr 
s 

n(r) 

||dr||=ds 

∇n(r) 

 tunit 

r0 

 

n(r+dr) 

 

 Fig. 1. Variables in the eikonal equation of the ray path. 

Some very efficient numerical methods to solve the eikonal equation are provided in [13]. By 
means of the following change of variable, the differential equation is first rewritten in a form 
that is more suitable for numerical integration: 

 
2

2

( ) ( ) ( )
( ) ( ) ( ) ( )

T
ds ds d n n n

t dt n n n
n n dt x y z

⎛ ⎞∂ ∂ ∂= ⇒ = ⇒ = ∇ = =⎜ ⎟∂ ∂ ∂⎝ ⎠
∫

r r r r
r r r D r . (2) 

Defining a tangent t to the ray path as t = dr/dt = n tunit , we finally write: 
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2

2
( )

( )

d
d dt

ddt

dt

⎧ =⎪⎪= ⇒ ⎨
⎪ =
⎪⎩

r
t

r
D r

t
D r

. (3) 

This set of differential equations determines the ray path from the initial conditions r0 
(position vector of the ray at the beginning of its trajectory) and t0, which is n(r0) times the 
unit tangent tunit to the ray at r0. Note that, unlike the eikonal equation, Eq. (3) is very similar 
in structure to a set of ordinary differential equations u" = f(t,u) with initial conditions (t0,u0), 
but without t appearing on the right-hand side of the equations, and with three components in 
each equation (x, y and z), which can be handled using matrix notation. Therefore, starting 
with (t0,r0), a succession of points (t1,r1), (t2,r2)… can be generated by means of any of the 
standard algorithms for solving sets of ordinary differential equations with initial conditions. 
For our calculations, we have used Runge-Kutta’s third-order algorithm [13], with which we 
have obtained an excellent trade-off between accuracy and computational cost: 

 

( )
2

6
where 2 8

4

6
2

h

h h h
h

h
h h

⎧ =
+⎧ ⎪⎛ ⎞= + +⎜ ⎟ ⎛ ⎞⎪ ⎪⎪ ⎪ = + +⎝ ⎠ ⎜ ⎟⎨ ⎨ ⎝ ⎠+ +⎪ ⎪= + ⎛ ⎞⎪ ⎪⎩ = + +⎜ ⎟⎪⎩ ⎝ ⎠

1 n
1 2

n+1 n n

2 n n 1

1 2 3
n+1 n

3 n n 2

k D r
k k

r r t
k D r t k

k k k
t t

k D r t k

. (4) 

Here, h is the step size chosen to run the algorithm. The smaller h is, the higher the accuracy 
is, but also the computational cost. Since h cannot be arbitrarily low, it must be selected 
carefully in order for the global (accumulated) error at the end of ray paths to be acceptable. 
The selection was made by comparing the numerical solutions obtained with different step 
sizes for a given ray path. By using a very exact ray path as reference, i.e. one obtained 
numerically with a very small step size h (close to 10−6 m, with which rounding errors are still 
negligible using double-precision arithmetic), we found that a value of h on the order of 
10−5 m was sufficient for the global error to be negligible in the typical lengths of a few 
centimeters needed in our studies. 

For the calculation of power loss, only radiation loss through refraction will be taken into 
account, since tunneling losses are much smaller [9] and material absorption is very small in a 
few centimeters (in addition, it does not affect the sensitivity –slope of the curves– of the 
tapers analyzed). A number of rays between 5 000 and 15 000 has been used in our 
computational simulations, depending on the taper geometry considered. This number was 
chosen by comparing a few results with those obtained with many more rays. In this way, we 
saw that the number of significant digits that we can reach in the quotient between output and 
input powers is two, which is accurate enough for our purposes (e.g., in one of the geometries 
studied we obtained 0.316 with 5 000 rays, 0.333 with 15 000 rays and 0.336 with 30 000 
rays). 

2.2 Particular case of a tapered GI fiber with core and cladding 

For the sake of programming flexibility, it is convenient to define the geometry of the fiber in 
a separate software module, in such a way that the ray-tracing module be valid for any 
geometry. The procedure we have used is very similar to that described in a previous work 
presented by some of us about the simulation of very flexible three-dimensional geometries 
with step-index fibers [14]. The main difference now is that, since we are dealing with graded-
index fibers, the geometry module must also return the refractive index and its gradient for 
any point r of the ray path. The position along the path is specified by means of a parameter p 
that determines the fiber cross section where the point of the ray path lies. For the type of 
geometries studied here, p was chosen to be the coordinate along the fiber symmetry axis 
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(i.e. p = z in Fig. 2). The geometry module also returns some other geometrical parameters, 
such as the radii of the cross sections of the core and the cladding as functions of p. 

 

L L
0

L
ρ

0

ρ
min

 z
  grad n

r
  

d
 

ρ(z)

n = constant

 

Fig. 2. Cross section of the sensing probe. The surfaces of constant refractive index are 
represented by dotted lines. The undeformed core radius is ρ0. 

The geometry that will be used as sensing probe is shown in Fig. 2, which is the same as that 
described in [15] for the specific case of glass fibers, but we will show that the appropriate 
dimensions of the sensor differ from one type of fiber to another, and also that they depend on 
the range of refractive indices to be measured. The cladding of the fiber has not been depicted 
in the figure, since we will focus our attention on the core before considering the cladding as 
well. The radius of the cladding decreases or increases maintaining the same proportion with 
that of the core. 

Firstly, we will obtain mathematical expressions for the refractive-index profile n(r) and 
its gradient ∇n(r) (grad n) as functions of the x, y and z coordinates (see also Fig. 1). The 
surfaces of constant refractive index are represented in Fig. 2 by dotted lines, which are their 
intersections with the meridional plane. There are three parts that should be considered for the 
calculation of grad n: the narrowing section of length L, the central part of constant diameter 
(waist) of length L0, and the expanding section following it, of length L. 

 
Regarding the narrowing section, if we take the origin of the z axis at the point where the 

fiber begins to be tapered, the core radius (interface with the cladding) follows a decreasing 
exponential given by 

 0
0( )

z L

min

z
ρρ ρ

ρ

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (5) 

where ρ0 and ρmin are the core radii of the undeformed fiber and of the waist, respectively, and 
L is the length of the section [1]. This exponential shape is obtained when the heat source 
moves over a constant length L0 (if the width of the heating zone were varied, a variety of 
taper shapes could be obtained). The density of the core can be assumed to remain constant 
after deformation, and the refractive index n to depend only on the dopant concentration. 
Under these assumptions, the surfaces of constant refractive index n are, in the 2-D view, 
exponentials proportional to that of the interface with the cladding. Therefore, if d is the 
variable distance from a point on the dotted line to the fiber symmetry axis, and r is its initial 
value at the entrance to the taper, we have: 
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( )

( )( )0 0
0

0 0 0

( ) ( , )
( ) ( )

z L

minz L

min

d dd r
n r n n n d n d z

z z

ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ −

⎛ ⎞⎛ ⎞= ⇒ = = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. (6) 

The explicit expression of n(d,z) is readily obtainable, since n(r) is a known function (a quasi-
parabolic profile with exponent g) given by 

 
2 2
1 2

1 2
0 1

( ) 1 2 with
2

g
n nr

n r n
nρ

⎛ ⎞ −= − Δ Δ =⎜ ⎟
⎝ ⎠

, (7) 

where n1 is the maximum refractive index, which takes place at the fiber symmetry axis, and 
n2 is the minimum one, i.e. that of the cladding [9]. The result is: 

 
/

min
1 0

0

( , ) 1 2
zg L

g gn z d n d
ρρ
ρ

−
− ⎛ ⎞

= − Δ ⎜ ⎟
⎝ ⎠

. (8) 

Since d = (x2+y2)1/2, the three-dimensional gradient of n is obtained as: 

 
2 2 2 2

, , , ,

TT
n n n x n y n n

n
x y z d d zx y x y

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
⎜ ⎟= =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂+ +⎝ ⎠ ⎝ ⎠

grad , (9) 

which, after substituting d for (x2+y2)1/2, yields grad n as an explicit function of x, y and z, as 
needed to solve the eikonal equation numerically. 

For the waist we have n(d) = n1 (1 − 2Δρmin
−gdg)1/2, and the procedure is the same as for 

the narrowing section. 
Regarding the expanding section following the waist, the result is nearly the same as that 

obtained for the narrowing section. There are only two differences: the third component of the 
gradient has the opposite sign, and z should be substituted by z − (L+L0). 

In the cladding, the gradient of the refractive index is null. Therefore, if a ray reaches the 
core-cladding interface its trajectory becomes a straight segment (Fig. 3). For such a ray, it is 
necessary to calculate the normal n to the surface at the point where it reaches the interface 
with the external medium, so as to be able to determine the incidence angle and to compare it 
with the critical angle of refraction [14]. 

 

0 1 2 3 4 5 6

x 10
−3

−5

0

5

x 10
−4

      n

z (m)

ρ 
(m

)

 

Fig. 3. Rays follow curved paths in the core and straight ones in the cladding. Calculating the 
normal n at interfaces is needed in all three sections of the taper. 

The unit normal n to the interface can be obtained analytically by taking advantage of the 
existing axial symmetry. For example, for the narrowing section the result can be obtained in 
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two steps, by first considering the unit normal in two dimensions n2D, i.e. in the meridional 
plane, which is given by (see Fig. 3): 

 ( )2 , 2 ,

2
2( ) ( )

1 1
D z D

T
T d z d z

n n
dz dzρ

ρ ρ− −⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2Dn , (10) 

where the denominator normalizes the vector, and where the minus sign in the first component 
of n2D is necessary to take the absolute value of the derivative dρ(z) / dz. 

The three-dimensional vector n can be obtained by rotating n2D around the fiber axis, 
since its axial and radial components are equal to those of n2D, resulting: 

 
2 , 2 , 2 ,2 2 2 2D D D z

T

x y
n n n

x y x y
ρ ρ

⎛ ⎞
⎜ ⎟=
⎜ ⎟+ +⎝ ⎠

n . (11) 

This expression is also valid for the expanding section following the waist, since the minus 
sign in the first component of n2D also appears in this section, this time in order to take the 
correct orientation backwards. 

2.3 Tapers with sinusoidal shape 

Depending on the manufacturing process (as will be seen later), the shape of a taper may be 
not exponential, but approximately sinusoidal, as shown in Fig. 4: 

 

ρmax ρmin
n = constant

ρ(z) 

d r

grad n grad n 
z

A·cos(2π z/Ltot) 

 
Ltot 

 

 Fig. 4. Core of a taper with a sinusoidal shape. 

The tapers produced in our laboratory in the way described below have a shape which is very 
approximately of this kind, as can be seen in Fig. 5: 

  

Fig. 5. Tapers manufactured by the authors. Proportions have been altered slightly, specially on 
the right (with 0.6-mm taper at the top, 0.4-mm one at the bottom) to increase cross-dimensions 
over axial ones, so that the taper shape can be appreciated better. 

The implementation of the ray-tracing method for this particular case is analogous to the one 
described for exponential tapers. Some details are provided in [16]. The pictures in Fig. 5 
(right) show the tapers used for the experimental measurements of subsection 3.1. 
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3. Validation of the numerical algorithms and experimental results 

The numerical algorithms described in the previous section have been implemented in a 
computer program. In order to validate its results, we have compared them with experimental 
measurements carried out in our laboratory with sinusoidal POF tapers manufactured by us 
(subsection 3.1) and also with experimental results reported in the literature for glass tapers of 
exponential shape (subsection 3.2). 

3.1 Validation of the numerical algorithms by comparison with our own experiments 

We have carried out experimental measurements in our laboratory with the two tapers on the 
right of Fig. 5. In this subsection we compare them with the corresponding attenuations 
calculated numerically for these geometries. 

The waist diameters are 0.6 mm and 0.4 mm respectively, with an estimated dimensional 
tolerance of ±0.05 mm. If we call narrowing ratio (NR) the quotient ρmin /ρmax (which will be 
an important parameter in the rest of the paper), we have NR∈[0.55,0.65] for the 0.6-mm taper 
and NR∈[0.35,0.55] for the 0.4-mm one. The measurements of their attenuations have been 
carried out using a low-numerical-aperture light source (NA ≈ 0.16). Table 2 summarizes the 
experimental and the computational results obtained for both tapers: 

Table 2. Comparison between author’s experimental and computational results. 

Attenuation (dB)  

Experimental Computational 

0.6-mm taper 0.9 1.19  
(NR=0.55) 

1.04  
(NR=0.60) 

0.96  
(NR=0.65) 

0.4-mm taper 1.9 1.88  
(NR=0.35) 

1.66  
(NR=0.40) 

1.50  
(NR=0.45) 

The computational and the experimental results agree satisfactorily well. The discrepancies 
may be attributed to a number of different reasons, like the practical impossibility of knowing 
the exact illumination conditions at the entrance of the taper, tolerances in experimental 
measurements, etc. 

3.2 Comparison of our numerical results with experimental ones reported in the literature 

Let us now consider the experimental results provided in [1] for a sensor based on a tapered 
GI glass optical fiber. The geometry of that sensor is the exponential one described in the 
previous section, with the manufacturing process imposing a relationship between L and L0, 
namely L = L0 ln(1/NR) [1,15,17]. In the present paper all the calculations with exponential 
tapers are carried out taking this relationship into account, e.g. whenever the narrowing ratio 
is changed for a given L0, the length L is also conveniently adjusted. 

The exponential shape occurs whenever the heat source moves over a constant length L0, 
whatever its speed, inasmuch it is much larger than the elongation speed. The length L 
becomes larger when the narrowing ratio NR = ρmin,clad / ρ0,clad decreases [1], ρmin,clad being the 
radius of the cladding at the waist (the narrowing ratio applies both to the core and to the 
cladding). 

Figure 6 shows the influence of the outer refractive index n on the fraction of power 
reaching the output end of the sensor, which has been either calculated by using two different 
methods based on ray-tracing, or measured in the laboratory [1]. In all cases, the optical fiber 
is the standard graded-index glass one indicated in Table 1. 
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Fig. 6. Comparison between our computational results (labeled Comp) and the experimental 
ones reported in [1] (labeled [1](exper)) for NR = 0.64. The results calculated in [1] (labeled 
[1](calc)) for a graded-index glass taper with narrowing ratios NR = 0.7 and NR = 0.6 (the 
closest ones to 0.64) are also shown (dashed lines). 

In Fig. 6 we have included the experimental results reported in [1] corresponding to 
NR = 40/62.5 = 0.64, which is the highest value used in the measurements, together with our 
own computational results for the same value of NR, obtained as described in the previous 
section. Although our aim is to analyze GI-POF tapers instead of glass ones, in this way we 
have had an experimental reference with which to be able to compare some of our results. 
Although there were other experimental results available for lower values of NR, such as 
NR = 0.48 or lower, we have not used them in order to ensure a sufficiently high number of 
modes propagating along the fiber for a reliable application of the ray-tracing method [5,9]. 
Since the number of modes M inside the core can be approximated by 

 
2

2 20
1 2

21

2 2

g
M n n

g

πρ
λ

⎛ ⎞≈ −⎜ ⎟ +⎝ ⎠
 (12) 

[9], M ≈ 160 at the waist of the taper in the case of the experimental results in [1] with 
NR = 0.64 and λ = 850 nm. This number is on the verge of validity of the ray-tracing method; 
however, the real number of modes propagating inside the fiber at the waist of the taper 
increases considerably if n < n2 = 1.459, since total internal reflections at the external interface 
of the cladding serve to guide modes along the fiber. In the case of a POF we will deal with 
thousands or millions of modes, so the applicability of the method will be out of doubt. 

In Fig. 6 we have also included the results calculated in [1] for a graded-index glass taper 
with the narrowing ratios closest to the experimental one of 0.64 (namely, for NR = 0.7 and 
NR = 0.6). These results were calculated by using a numerical integration technique proposed 
in [2] for the case of step-index tapered fibers, in which ray paths are straight (as in Fig. 1 
of [2]). This employment of straight rays may be admissible for GI fibers of low numerical 
aperture, in which light rays, even if they are curved, propagate almost parallely to the fiber 
symmetry axis, but it is not admissible for high-numerical-aperture fibers, like some of the 
ones analyzed by us. Our technique approximates the exact, curved ray paths in the taper, 
which requires both more elaborate numerical methods and higher computational costs, but it 
will serve us to deal with POFs. In the case of Fig. 6 (glass taper) both methods yield 
reasonably similar results (compare the gray shaded region limited by NR = 0.7 and NR = 0.6 
with the squared blue line). When n decreases and approaches 1.43, our results agree better 
with the experimental ones. One of the possible reasons for the agreement not to be complete 
is that it is impossible in practice to reproduce the exact illumination conditions at the 
entrance of the device, since these conditions change from one LED to another and depend on 
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the distance from the LED to the fiber, etc. Our results have been obtained with a light source 
of 10 000 rays initially parallel to the fiber axis and uniformly illuminating its whole input 
cross section. The length of the waist is L0 = 5 mm. 

In order to facilitate the design of sensors with this type of geometry employing any type 
of fiber, let us first consider the trajectory of light rays graphically. Figure 7 shows, for the 
same launched ray, the values of some incident angles at the external surface of the taper, 
illustrating the influence of its length L. In Fig. 7(b) L is larger than in Fig. 7(a) (5 mm against 
2 mm), but the waist radius is the same in both cases (ρmin,clad = 20 μm), as well as the optical 
fiber employed (the glass fiber of Table 1). We can notice that the ray path from the entrance 
of the taper to the point where it enters the cladding has more oscillations for L = 5 mm 
(Fig. 7(b)) than for L = 2 mm (in both cases it is approximately sinusoidal with a decreasing 
amplitude). Moreover, in a hypothetical case in which the narrowing section of the taper were 
much shorter than 2 mm, the ray would tend to reach the cladding without oscillations, 
because, in such a case, the surfaces of constant refractive index would be almost 
perpendicular to the ray, and the radial component of the gradient of the refractive index 
would decrease considerably. As a consequence, the light power attenuation would be much 
higher. In contrast, for moderate lengths the total refraction loss becomes greater when L 
increases. This indicates that the amplitude of the oscillations of the ray path does not 
decrease as rapidly as the diameter of the fiber. As for the expanding section following the 
waist of the taper, the attenuation tends to be small, because the diameter of the fiber increases 
with z. Anyway, there can be refracting rays in this section as well. For example, this could be 
the case of the ray plotted in Fig. 3 for a sufficiently high outer refractive index n. 

−6

−4

−2

0

2

4

6
x 10

−5

0 0.5 1 1.5 2

x 10
−3

83.2º

85.4º

(a)

z (m)
  

−6

−4

−2

0

2

4

6
x 10

−5

0 1 2 3 4 5

x 10
−3

83.5º
87.3º

(b)

z (m)
 

Fig. 7. Ray paths inside a taper, with some angles of incidence on the external surface. Angles 
appear distorted because of the different scales employed in the horizontal and vertical axes for 
a better visualization. The internal(external) exponential curves represent the contour of the 
core(cladding) in the meridional plane. The oscillating curve illustrates the trajectory of a 
meridional ray for the same launching conditions in two cases: (a) Length L = 2 mm; 
(b) L = 5 mm. 

Moreover, a significant amount of attenuation can occur in the waist. As was shown in Fig. 3, 
rays can enter the cladding in the waist, and our computations have shown them not to be 
negligible. As soon as a ray has crossed the core-cladding interface, it is susceptible of 
escaping if the refractive index of the outer medium is high enough. 

It is clear that very short tapered sections (values of L close to 0) tend to yield high losses, 
because in such small distances many rays cannot bend sharply enough to avoid the core-
cladding interface standing almost perpendicularly to their trajectories. As a consequence, 
losses decrease as L increases for small values of L (and a given narrowing ratio). However, 
this tendency does not continue forever, and losses in the tapered section start to increase 
again when L becomes large enough. Figure 8 helps to explain this effect. It shows two 
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tapered sections with the same narrowing ratio (NR = 0.3) but with different lengths L, namely 
2 mm and 10 mm. In both cases, the core of the tapered fiber has been depicted together with 
the trajectories of some light rays. These rays are identical at the entrances of both geometries 
(the 2-mm taper and the 10-mm one). Therefore, we can compare the number of rays that 
reach the core-cladding interface in both cases. Let us consider, to facilitate the explanation, 
that any ray entering the cladding will escape from the fiber (i.e. that the refractive index of 
the outer medium is high enough). The ray paths have been obtained numerically (considering 
that the fiber is the Lucina of Table 1). In this way, we can notice that 5 of the rays considered 
escape when L = 2 mm, whereas this number is greater (7) when L has been increased to 
10 mm. Although the depicted rays have been chosen arbitrarily, the fact that losses can 
increase when L increases is not a coincidence. In fact, we can notice that the rays that escape 
are those whose initial distance to the fiber symmetry axis is greater than a certain threshold 
value for each taper, which establishes the limit between escaping or not. This distance is 
smaller in the 10-mm taper considered than in the 2-mm one, and it would decrease slowly if 
we chose larger values of L (although the rate of change would tend to decrease). The dashed 
lines in Fig. 8 also help to understand what is happening. 

On the other hand, we have seen that the length L0 is not very important if it is large 
enough. This can be easily explained: because of the translational symmetry in the straight 
section, the trajectory of each ray becomes periodical in shape [9], so the ray will be lost by 
refraction within one period, or never. 
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Fig. 8. Example to illustrate that, for certain values of the taper length L, power loss can 
increase as L increases for a given narrowing ratio. The fiber is a Lucina one with ρ0 = 60 μm. 
The rays entering the taper and the narrowing ratio (NR = 0.3) are identical in (a) and (b), but in 
(a), with L = 2 mm, 5 rays escape, while in (b), with L = 10 mm, 7 rays escape. 

 
4. Sensor design with a commercial GI POF 

We will use the same type of geometry as that employed for glass graded-index fibers, but we 
will analyze the dimensions that would be appropriate for the sensor in the case of utilizing 
any of the commercial GI POFs available nowadays (namely the GigaPOF from Chromis 
[10], the OM-Giga from Optimedia [11], and the Lucina from Asahi Glass [12]). 

Let us begin with the GigaPOF / OM-Giga fibers (it does not matter which, since they 
both have the same optical and geometrical characteristics: see Table 1). We have also carried 
out simulations for the Lucina fiber. We will choose L0 = 5 mm for the length of the waist, 
which is a value that has already been reported in the manufacturing process [1]. Figure 9 is a 
3-D graph showing the fraction of power transmitted as a function of the narrowing ratio NR 
and the outer refractive index n accompanying its corresponding critical angle of refraction αc 
. This will facilitate the comparison with the Lucina fiber, since its value of n2 is different, 
which means that the same value of αc corresponds to a different value of n, namely 

#99997 - $15.00 USD Received 11 Aug 2008; revised 21 Sep 2008; accepted 22 Sep 2008; published 2 Oct 2008

(C) 2008 OSA 13 October 2008 / Vol. 16,  No. 21 / OPTICS EXPRESS  16627



n = n2 sin(αc). Therefore, the corresponding refractive indices in Fig. 9 range from 1.292 to 
1.492. On the other hand, by linearly spacing the critical angle instead of the corresponding 
refractive index, the differences between the slopes of the curves of constant NR are seen 
more clearly, since these curves would be nearly vertical for n = n2 if the refractive indices 
were linearly spaced. The slope of the curves of constant NR is smaller when NR is very close 
to 1, as will be shown more clearly in Fig. 10. In all cases, the light source employed in the 
computational simulations is the one explained in the previous section (parallel rays uniformly 
illuminating the whole cross section). 
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Fig. 9. Fraction of power transmitted with the GigaPOF / OM-Giga fibers, as a function of the 
narrowing ratio and the critical angle (or outer refractive index). 

In Fig. 9 we can notice that, when αc = 90º, there are losses for any value of the narrowing 
ratio, except for NR = 1, since the light rays whose turning points [9] are initially very close to 
the core-cladding interface will eventually refract into the cladding and escape for sufficiently 
large values of L. This is so because the radius of the taper decreases more rapidly than the 
distance to the fiber axis of the successive turning points. 

Another issue is the range of measurable refractive indices, which can be extended by 
reducing the value of NR. This fact is more clearly seen in Fig. 10, which also serves to 
compare the behavior of the OM-Giga / GigaPOF fibers with that of the Lucina. 

The most significant difference between both types of fibers is that, even with the same 
narrowing ratio and for refractive indices yielding the same critical angles, the attenuation in 
the Lucina fiber is significantly higher (i.e. lower values of Pout /Pin). For example, for 
NR = 0.4 and αc = 88º, Pout /Pin = 0.32 for the OM-Giga / GigaPOF fibers, whereas 
Pout /Pin = 0.20 for the Lucina fiber. 
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Fig. 10. Influence of NR on the sensitivity (slope) of the sensor and on the range of measurable 
refractive indices (critical angles), for the OM-Giga / POF and the Lucina fibers. 

We have found that this higher loss of the Lucina fiber is due to its much thicker cladding (the 
core-to-cladding diameter ratio is 0.24 in the Lucina and 0.9 in the OM-Giga / GigaPOF). On 
one hand, we have calculated the power loss in a hypothetical fiber with the same 
characteristics as the Lucina but with a smaller cladding diameter. Specifically, we have taken 
a diameter of 66 μm instead of the real value of 245 μm, in order to have the same 0.9 core-to-
cladding diameter ratio. For such a fiber, we have obtained Pout /Pin = 0.31, which almost 
coincides with the result corresponding to the OM-Giga / GigaPOF. 

On the other hand, the fact that a thicker cladding yields higher losses has a simple 
geometrical explanation, which is illustrated in Fig. 11. This figure shows the trajectory of a 
light ray from the core-cladding interface (point P1 on the first contour line) until it reaches 
the outer surface of a thin cladding (point P2 on the second contour line) or, alternatively, of a 
thick one (point P3 on the third contour line). Since a ray within the cladding propagates 
following a straight line, its angle of incidence onto the interface between the cladding and the 
outer medium depends only on the normal to it (n2 or n3). Figure 11 shows an angle of 
incidence α3 that is typically smaller than α2 (for the geometry represented, α2 = 71.3º and 
α3 = 67.4º). Therefore, a ray that would reflect at P2 if the cladding were narrow, could refract 
and get lost at P3 if the cladding were thicker. This turns out to be the dominant effect 
explaining the higher losses for thicker claddings. 
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Fig. 11. Trajectory of a light ray from the core-cladding interface (P1) to the outer surface of a 
thin cladding (P2) and a thick one (P3), with the corresponding angles of incidence α2 and α3. 

The choice of NR influences the range of measurable refractive indices with each type of 
fiber. For example, if NR = 0.4 we can measure values from n = 1.34 (αc = 90º) to n = 1.10 
(αc = 55º), whereas, in the case of the OM-Giga / GigaPOF fibers, the range is smaller and 
extends from n = 1.492 (αc = 90º) to n = 1.352 (αc = 65º). If the narrowing ratio were 0.7 
instead of 0.4, we could only measure refractive indices down to 1.469 (αc = 80º) in the case 
of the OM-Giga / GigaPOF fibers, and down to 1.259 (αc = 70º) in the case of the Lucina 
fiber. The maximum measurable refractive index is always n = n2. Therefore, the range of 
measurable refractive indices can be adjusted at will up to n2, although the narrowing ratio 
should not be too close to 1 for losses to occur. Note that, if the range of attenuations does not 
change much, any increase in the range of the measurable refractive indices must be achieved 
at the expense of the sensitivity of the sensor to variations of n, and vice-versa. 

Another advantage of this type of sensor over other solutions (e.g. bends with SI fibers of 
thick cladding [18]) is that it is not necessary to remove the cladding, since light rays enter the 
cladding without refraction. For tapered structures, we can now compare the performance of 
GI POFs with that of GI glass fibers. We can observe that, for a given narrowing ratio, the 
range of refractive indices that can be measured is larger in the case of a Lucina POF than in 
the case of the glass fiber reported in [1]. For example, in Fig. 10 we can notice that, for 
NR = 0.7 and a Lucina fiber, the range of refractive indices extends from 1.34 (αc = 90º) to 
1.259 (αc = 70º), so the difference is Δn(Lucina,NR=0.7) = 0.081, whereas, in the case of a glass 
fiber with NR = 0.64 only, the difference is Δn(glass,NR=0.64) = 0.029 (see the computational curve 
in Fig. 6). As for the OM-Giga / GigaPOF fibers, the range is not so large because the 
cladding is much thinner, as explained before. In any case, the OM-Giga / GigaPOF could be 
preferred over the Lucina fiber when the advantage of having a large fiber diameter is an 
important issue, since their diameter is larger than that of the Lucina and, to a greater extent, 
larger than that of the conventional glass GI fibers. Notice that, even in the hypothetical case 
of having two fibers with the same geometry, profile exponent and numerical aperture, the 
maximum measurable refractive index would be different if the cladding is of a different 
material (n2 is not a parameter that can be changed for a given material). 

Manufacture of PMMA POF tapers by drawing and heating requires taking care of the 
fact that this material is thermoplastic with a low softening temperature, but the technique has 
already been put into practice satisfactorily. For example, a method reported in [19] and 
illustrated graphically in Fig. 12 has served to manufacture a taper at any position in the fiber, 
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both in step-index POFs and in GI POFs. The manufacture of PMMA tapers has also been 
reported recently in [3]. 

  

 Fig. 12. Manufacturing of a taper in a plastic optical fiber by heating and pulling. 

Finally, it is worth mentioning that glass tapers have also been made by etching the fiber 
instead of heating and pulling it [20]. In this way, refraction losses are greater, since ray paths 
inside the core are unaltered by the etching, which just brings the outer interface closer to the 
fiber symmetry axis. In consequence, the range of refractive indices that can be measured is 
larger for the same value of NR. For example, for NR = 40/62.5 = 0.64 the difference between 
the maximum and the minimum measurable values of n in an etched glass taper is 
Δn(glass,etched) = 0.035, whereas this difference is smaller with a stretched glass taper, namely, 
Δn(glass,stretched) = 0.029. All in all, in both cases, the range is much smaller than that obtained 
by us for the Lucina fiber with the same narrowing ratio, which is Δn(Lucina,NR=0.64) = 0.13. 
 
5. Conclusions 

We have shown how to implement a method based on ray tracing to analyze the propagation 
of light and its power attenuation in tapered multimode graded-index polymer optical fibers. 
With this implementation, tested with the aid of experimental results existing for glass fibers, 
we have shown that similar geometries can serve to construct refractive-index sensors using 
commercial GI POFs (known to have distinct advantages over glass fibers). In the case of the 
Lucina POF, the narrowing ratio does not need to be very small for a large range of refractive 
indices to be measurable, but the maximum refractive index that can be measured is smaller 
than in the case of the OM-Giga / GigaPOF fibers. For the same narrowing ratio, the range of 
refractive indices that can be measured with a tapered Lucina POF is greater than with a GI 
glass fiber. 
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